


MECHANICAL DATA

Dimensions in mm (inches)

HIGH SPEED MEDIUM POWER PNP SWITCHING TRANSISTOR

FEATURES

- SILICON PLANAR EPITAXIAL PNP TRANSISTOR
- HIGH SPEED SATURATED SWITCHING
- ALSO AVAILABLE IN CERAMIC SURFACE MOUNT PACKAGE

TO39 METAL PACKAGE (TO-205AD)

Underside View

PIN 1 – Emitter PIN 2 – Base PIN 3 – Collector

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise stated)

V _{CBO}	Collector - Base Voltage	- 60V		
V_{CEO}	Collector - Emitter Voltage	- 60V		
V_{EBO}	Emitter - Base Voltage	– 5V		
I_{C}	Collector Current Continuous	– 600mA		
P_{D}	Total Device Dissipation @ T _A = 25°C	600mW		
	Derate above 25°C	3.43mW / °C		
P_{D}	Total Device Dissipation @ T _C = 25°C	3W		
	Derate above 25°C	17.2mW / °C		
T_J , T_STG	Operating and Storage Junction Temperature Range	−65 to +200°C		

THERMAL CHARACTERISTICS

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	292°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	58°C/w

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab pic. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 3063
E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit		
	OFF CHARACTERISTICS								
V _{(BR)CEO} ¹	Collector – Emitter Breakdown Voltage	$I_C = -10mA$	I _B = 0	-60			V		
V _{(BR)CBO}	Collector – Base Breakdown Voltage	$I_{C} = -10 \mu A$	I _E = 0	-60			V		
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	$I_{E} = -10 \mu A$	I _C = 0	- 5			V		
I _{CEX}	Collector Cut-off Current	$V_{CE} = -30V$	$V_{BE} = -0.5V$			-1	μА		
I _{CBO}	Collector Cut-off Current	I _E = 0	$V_{CB} = -50V$			-0.01	μА		
			T _A = 150°C			-10			
I _B	Base Current	$V_{CE} = -30V$	$V_{BE} = -0.5V$			-50	nA		
	ON CHARACTERISTICS					•			
V1	Collector – Emitter Saturation Voltage	$I_{\rm C} = -150 {\rm mA}$	$I_B = -15mA$			-0.4	V		
V _{CE(sat)} ¹		$I_{C} = -500 \text{mA}$	$I_B = -50 \text{mA}$			-1.6			
V	Base – Emitter Saturation Voltage	$I_{\rm C} = -150 {\rm mA}$	$I_B = -15mA$			-1.3	V		
V _{BE(sat)}		$I_{\rm C} = -500 {\rm mA}$	$I_C = -50 \text{mA}$			-2.6	1 V		
	DC Current Gain	$I_{\rm C} = -0.1 \rm mA$	V _{CE} = −10V	75					
h _{FE}		$I_C = -1mA$	$V_{CE} = -10V$	100					
		$I_C = -10mA$	$V_{CE} = -10V$	100			1 — [
		$I_{\rm C} = -150 {\rm mA}$	V _{CE} = -10V ¹	100		300			
		$I_{\rm C} = -500 {\rm mA}$	V _{CE} = -10V ¹	50					
	SMALL SIGNAL CHARACTERISTICS								
f _T	Transition Frequency ²	$I_C = -50 \text{mA}$	V _{CE} = −20V	200			MHz		
		f = 100MHz		200					
C _{CB}	Output Capacitance	$V_{CB} = -10V$	I _E = 0			8	pF		
		f = 1.0MHz							
C _{EB}	Input Capacitance	$V_{BE} = -2V$	I _C = 0			30	pF		
		f = 1.0MHz							
	SWITCHING CHARACTERISTICS								
t _{on}	Turn-On Time	V _{CC} =	= -30V		26	45			
t _d	Delay Time			6	10	ns			
t _r	Rise Time			20	40				
t _{off}	Turn-Off Time	$V_{CC} = -6V$ $I_{C} = -150 \text{mA}$ $I_{B1} = I_{B2} = -15 \text{mA}$		70	300				
t _s	Storage Time				50	80	ns		
t _f	Fall Time				20	30			

NOTES:

- 1) Pulse test: $~t_p \leq 300 \mu s$, $\delta \leq 2\%$
- 2) f_T is defined as the frequency at which h_{FE} extrapolates to unity.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk